Saturday, September 27, 2014

Methods And Techniques For Liposome Manufacturing

By Jody Leach


The discovery of liposomes with their many interesting properties has attracted much attention. These tiny spheres are suitable for using as delivery vehicles for nutrients and drugs into the human body. Identical to human cell membranes, they easily transfer and deliver active ingredients. Liposome manufacturing involves the same basic steps but the use many different techniques. Research is constantly being done to increase their effectiveness.

Phospholipids like lecithin is used as raw material. The phospholipid molecules have heads that love water. They also have two tails that are essential fatty acid chains repelled by water. When the phospholipids are put in a solution that is water-based, the heads end up side by side with the tails trailing behind. The fact that the tails repel water means that another layer lines up with the tails facing the tails of the first layer. This natural alignment results in two rows of tightly fitting molecules. These layers form membranes around and inside all cells.

Liposomes can be used as delivery vehicles for a wide variety of drugs, vaccines, enzymes, genetic material and for some nutritional supplements as well. They not only allow for release of encapsulated materials but are beneficial in themselves for cells. The lipids used to construct the fatty part of the molecule is used by the cell wall for repair and construction of new membranes.

Various lipids and mixtures can be used to make liposomes and some of these are of a higher quality than others. What they have in common is they do not go through the digestive tract and the encapsulated payload is not biologically active until it reaches the cells. It is how, when, where and why the rupture of the membrane occurs that the difference between them comes in.

The methods used in preparation may all be quite different but the basic stages remain the same. Thin lipid films are hydrated and this causes liquid bilayers to form. These large vesicles need to be reduced in size and energy output is required for this. Sonication is the use of sound waves and another mechanical method used is extrusion.

So, the general elements consist of lipid preparation for hydration, hydration with agitation and then sizing of vesicles. Each different method used has certain advantages and disadvantages. Liquid hydration methods usually result in low dose loading. Sonication can affect the structure of an encapsulated drug.

The type of manufacturing processes and equipment used both have an effect on the type of liposomes produced. Inconsistent sizes, high production costs and structural instability are just some of the challenges faced in production. Many advances are being made in this respect as research proceeds at a rapid pace. An exciting example is research into how to make liposomes that can target certain organs or diseased tissue.

One of the greatest benefits of liposomes is there flexibility. They can be adapted in many different ways to suit different applications. Size, surface charge and lipid content can all be varied according to the techniques used. Conventional methods are effective but much experimentation is still being done. The future holds many new possibilities with the exciting developments taking place in this field.




About the Author:



banner
Previous Post
Next Post

0 commentaires: